ENTRY V+76 0 V+76 0 1 SUBENT V+76 1 0 V+76 1 1 BIB 12 75 V+76 1 2 INSTITUTES (FRPAR) V+76 1 3 (FRSTR) V+76 1 4 REFERENCE (J,PR/C,13,3,984,1976) V+76 1 5 AUTHORS (J.VERNOTTE,J.M.MAISON,A.CHEVALLIER,A.HUCK,C.MIEHE, V+76 1 6 G.WALTER) V+76 1 7 TITLE ELECTROMAGNETIC PROPERTIES OF THE 6621- AND 7950-KEV V+76 1 8 LEVELS IN 32S V+76 1 9 FACILITY (VDG) 3-MV VAN DE GRAAFF ACCELERATOR, CENTRE DE V+76 1 10 RECHERCHES NUCLEAIRES, STRASBOURG-CRONENBOURG, FRANCE. V+76 1 11 INC-PART (P) PROTONS V+76 1 12 TARGETS RED PHOSPHORUS EVAPORATED IN A VACUUM ON A CAREFULLY V+76 1 13 CLEANED 0.2-MM-THICK GOLD BACKING. TARGETS OF 40, V+76 1 14 60, AND 90 MICROGRAM/CM**2 PHOSPHORUS WERE PREPARED. V+76 1 15 THESE TARGETS WERE PLACED AT 45 DEGREES WITH RESPECT V+76 1 16 TO THE BEAM DIRECTION IN AN AIR-COOLED TARGET HOLDER. V+76 1 17 METHOD PROTON BEAMS WERE OBTAINED FROM THE 3-MV VAN DE V+76 1 18 GRAAFF ACCELERATOR AT CENTRE DE RECHERCHES NUCLEAIRES, V+76 1 19 STRASBOURG-CRONENBOURG. THE BEAM PASSED THROUGH A V+76 1 20 LIQUID NITROGEN TRAP WHICH HELPED CONSIDERABLY TO V+76 1 21 REDUCE CARBON BUILDUP ON THE TARGET DURING THE V+76 1 22 MEASUREMENTS. THE GAMMA RAYS WERE DETECTED USING V+76 1 23 GE(LI) DETECTORS. A 49-CM**3 DETECTOR LOCATED 9 CM V+76 1 24 FROM THE TARGET WAS USED AT THE 1247- AND 1402-KEV V+76 1 25 RESONANCES WHILE A 69-CM**3 DETECTOR LOCATED 8 CM V+76 1 26 FROM THE TARGET WAS USED AT THE 1437- AND 1581-KEV V+76 1 27 RESONANCES. EACH DETECTOR HAD A RESOLUTION OF 3 KEV V+76 1 28 FWHM AT THE 1.33-KEV 60CO LINE. EACH DETECTOR WAS V+76 1 29 MOUNTED ON AN ARM THAT COULD ROTATE AROUND THE V+76 1 30 BEAM IMPACT POINT FOR THE DETERMINATION OF ANGULAR V+76 1 31 DISTRIBUTIONS. A THIRD GE(LI) DETECTOR WAS FIXED V+76 1 32 AT 90 DEGREES TO SERVE AS A MONITOR. THE ANISOTROPY V+76 1 33 OF THE ARRANGEMENT WAS CHECKED BY MEASURING IN THE V+76 1 34 SAME GEOMETRY THE ANGULAR DISTRIBUTION FOR THE V+76 1 35 ISOTROPICALLY-EMITTED 844-KEV GAMMA RAY FROM THE V+76 1 36 27AL(P,P'-GAMMA)27AL REACTION AT THE 1683-KEV V+76 1 37 RESONANCE. THE GE(LI) DETECTOR EFFICIENCIES WERE V+76 1 38 MEASURED USING A 56CO SOURCE FOR EG < 3.2 MEV AND V+76 1 39 GAMMA-RAY TRANSITIONS OF KNOWN INTENSITIES EMITTED V+76 1 40 AT THE 992-KEV RESONANCE OF THE 27AL(P,GAMMA)28SI V+76 1 41 REACTION FOR EG > 3.2 MEV. THE EFFICIENCIES WERE ALSO V+76 1 42 DETERMINED USING A MONTE CARLO PROCEDURE. THE RESULTS V+76 1 43 FROM THE EXPERIMENTAL AND ANALYTICAL METHODS AGREED V+76 1 44 WELL. THE EXPERIMENT INCLUDED SEVERAL ASPECTS: GAMMA- V+76 1 45 RAY SPECTRA AND ANGULAR DISTRIBUTIONS WERE TAKEN V+76 1 46 AT 0, 30, 45, 60, AND 90 DEGREES FOR FOUR PROTON- V+76 1 47 ENERGY RESONANCES, NAMELY, EP = 1247, 1402, 1437, V+76 1 48 AND 1581 KEV. A TOTAL PROTON CHARGE ON TARGET OF V+76 1 49 60 MILLICURIE WAS REQUIRED TO OBTAIN A STATISTICAL V+76 1 50 ACCURACY OF 10 PERCENT FOR THE GAMMA-RAY TRANSITION V+76 1 51 6621 TO 2230 KEV IN 32S. ELSEWHERE, EXPOSURES OF 50 V+76 1 52 MILLICURIE WERE FOUND TO BE ADEQUATE. BRANCHING V+76 1 53 RATIOS WERE DEDUCED FROM THE MEASURED SPECTRA AND V+76 1 54 THESE WERE COMPARED WITH OTHER VALUES FROM THE V+76 1 55 LITERATURE. ALL THE ANGULAR DISTRIBUTION DATA WERE V+76 1 56 FITTED WITH EVEN-ORDER LEGENDRE POLYNOMIAL EXPANSIONS V+76 1 57 UP TO FOURTH ORDER. MULTIPOLE MIXING RATIOS WERE ALSO V+76 1 58 DERIVED FROM THIS ANALYSIS. LIFETIMES OF SEVERAL 32S V+76 1 59 LEVELS HAVE BEEN MEASURED USING THE DOPPLER SHIFT V+76 1 60 ATTENUATION METHOD (DSAM). PHOSPHORUS TARGET V+76 1 61 THICKNESSES OF 60 AND 90 MICROGRAMS/CM**2 WERE USED V+76 1 62 TO INSURE THAT THE RECOILING SULFUR IONS STOPPED IN V+76 1 63 THE TARGET LAYER. GAMMA-RAY SPECTRA WERE MEASURED AT V+76 1 64 THE 1402-, 1437-, AND 1581-KEV RESONANCES AND AT V+76 1 65 0, 90, AND 130 DEGREES. ANALYSIS OF THE PEAK-SHAPE V+76 1 66 DATA WAS ACCOMPLISHED USING STANDARD TECHNIQUES THAT V+76 1 67 ARE DISCUSSED IN THE ORIGINAL PAPER. V+76 1 68 DETECTORS (GELI) 49-CM**3 GE(LI) DETECTOR. V+76 1 69 (GELI) 69-CM**3 GE(LI) DETECTOR. V+76 1 70 MONITORS (CI) CURRENT INTEGRATOR. V+76 1 71 (GELI) UNSPECIFIED GE(LI) DETECTOR. V+76 1 72 CORRECTION DATA WERE CORRECTED FOR GAMMA-RAY ATTENUATION, V+76 1 73 GEOMETRY DETAILS, AND DETECTOR EFFICIENCY. V+76 1 74 ERR-ANALYS THE UNCERTAINTY IN THE GE(LI) DETECTOR EFFICIENCY WAS V+76 1 75 ESTIMATED TO BE ABOUT 10 PERCENT. THE ACCURACY OF THE V+76 1 76 MEASURED BRANCHING RATIOS IS 15 PERCENT. V+76 1 77 ENDBIB 75 V+76 1 78 ENDSUBENT 1 V+76 199999 SUBENT V+76 2 0 V+76 2 1 BIB 2 11 V+76 2 2 REACTION 31P(P,GAMMA)32S V+76 2 3 COMMENTS GAMMA-RAY DECAY BRANCHING RATIOS OF RESONANCE LEVELS V+76 2 4 ARE GIVEN. DATA ARE OBTAINED FROM TABLE I OF THE V+76 2 5 ORIGINAL PAPER. EP = RESONANCE PROTON ENERGY. EX = V+76 2 6 EXCITATION ENERGY IN 32S. EI = ENERGY OF INITIAL V+76 2 7 STATE FOR TRANSITION IN 32S. J-PI(I) = SPIN/PARITY OF V+76 2 8 INITIAL STATE. A NEGATIVE VALUE MEANS NEGATIVE PARITY. V+76 2 9 OTHERWISE PARITY IS POSITIVE. EF = ENERGY OF FINAL V+76 2 10 STATE. J-PI(F) = SPIN/PARITY OF FINAL STATE. B = V+76 2 11 BRANCHING FACTOR. PCT = PERCENT. A BLANK SPACE IMPLIES V+76 2 12 THAT THE VALUE IS NOT PROVIDED IN THE TABLE. V+76 2 13 ENDBIB 11 V+76 2 14 DATA 7 37 V+76 2 15 EP EX EI J-PI(I) EF J-PI(F) V+76 2 16 B V+76 2 17 MEV MEV MEV NO-DIM MEV NO-DIM V+76 2 18 PCT V+76 2 19 1.247 10.072 10.072 -2. 0. 0. V+76 2 20 1.8 V+76 2 21 1.247 10.072 10.072 -2. 2.23 2. V+76 2 22 28. V+76 2 23 1.247 10.072 10.072 -2. 4.28 2. V+76 2 24 1.6 V+76 2 25 1.247 10.072 10.072 -2. 4.70 1. V+76 2 26 0.9 V+76 2 27 1.247 10.072 10.072 -2. 5.01 -3. V+76 2 28 12. V+76 2 29 1.247 10.072 10.072 -2. 5.41 3. V+76 2 30 4. V+76 2 31 1.247 10.072 10.072 -2. 6.22 -2. V+76 2 32 50. V+76 2 33 1.247 10.072 10.072 -2. 7.11 V+76 2 34 0.7 V+76 2 35 1.247 10.072 10.072 -2. 8.13 V+76 2 36 0.3 V+76 2 37 1.247 10.072 10.072 -2. 8.30 V+76 2 38 0.4 V+76 2 39 1.247 10.072 10.072 -2. 8.50 V+76 2 40 0.2 V+76 2 41 1.402 10.222 10.222 -3. 2.23 2. V+76 2 42 12. V+76 2 43 1.402 10.222 10.222 -3. 4.46 4. V+76 2 44 22. V+76 2 45 1.402 10.222 10.222 -3. 5.01 -3. V+76 2 46 66. V+76 2 47 1.437 10.256 10.256 -4. 2.23 2. V+76 2 48 0.5 V+76 2 49 1.437 10.256 10.256 -4. 4.28 2. V+76 2 50 0.1 V+76 2 51 1.437 10.256 10.256 -4. 4.46 4. V+76 2 52 8. V+76 2 53 1.437 10.256 10.256 -4. 5.01 -3. V+76 2 54 4. V+76 2 55 1.437 10.256 10.256 -4. 5.41 3. V+76 2 56 0.1 V+76 2 57 1.437 10.256 10.256 -4. 6.41 4. V+76 2 58 0.5 V+76 2 59 1.437 10.256 10.256 -4. 6.62 -4. V+76 2 60 77. V+76 2 61 1.437 10.256 10.256 -4. 6.76 V+76 2 62 4.1 V+76 2 63 1.437 10.256 10.256 -4. 6.85 V+76 2 64 0.8 V+76 2 65 1.437 10.256 10.256 -4. 7.35 V+76 2 66 1. V+76 2 67 1.437 10.256 10.256 -4. 7.70 V+76 2 68 0.5 V+76 2 69 1.437 10.256 10.256 -4. 7.95 V+76 2 70 6.2 V+76 2 71 1.581 10.395 10.395 -4. 2.23 2. V+76 2 72 0.3 V+76 2 73 1.581 10.395 10.395 -4. 4.28 2. V+76 2 74 0.1 V+76 2 75 1.581 10.395 10.395 -4. 4.46 4. V+76 2 76 1.1 V+76 2 77 1.581 10.395 10.395 -4. 5.01 -3. V+76 2 78 5.6 V+76 2 79 1.581 10.395 10.395 -4. 5.41 3. V+76 2 80 0.2 V+76 2 81 1.581 10.395 10.395 -4. 6.41 4. V+76 2 82 0.5 V+76 2 83 1.581 10.395 10.395 -4. 6.62 -4. V+76 2 84 84. V+76 2 85 1.581 10.395 10.395 -4. 6.76 V+76 2 86 2.7 V+76 2 87 1.581 10.395 10.395 -4. 6.85 V+76 2 88 1.3 V+76 2 89 1.581 10.395 10.395 -4. 7.70 V+76 2 90 0.7 V+76 2 91 1.581 10.395 10.395 -4. 7.95 V+76 2 92 4.2 V+76 2 93 ENDDATA 78 V+76 2 94 ENDSUBENT 2 V+76 299999 SUBENT V+76 3 0 V+76 3 1 BIB 2 7 V+76 3 2 REACTION 31P(P,GAMMA)32S V+76 3 3 COMMENTS GAMMA-RAY BRANCHING RATIOS OF SOME BOUND LEVELS OF 32S V+76 3 4 ARE GIVEN. DATA ARE OBTAINED FROM TABLE II. EXI = V+76 3 5 INITIAL STATE OF TRANSITION. EXI-ERR = ERROR IN EXI. V+76 3 6 EXF = FINAL STATE OF TRANSITION. B = BRANCHING RATIO. V+76 3 7 B-ERR = ERROR IN B. PCT = PERCENT. BLANK ENTRIES V+76 3 8 CORRESPOND TO MISSING VALUES IN THE ORIGINAL PAPER. V+76 3 9 ENDBIB 7 V+76 3 10 DATA 5 13 V+76 3 11 EXI EXI-ERR EXF B B-ERR V+76 3 12 KEV KEV KEV PCT PCT V+76 3 13 5006.2 0.3 0. 3.4 0.4 V+76 3 14 5006.2 0.3 2230. 96.6 0.4 V+76 3 15 6224.3 0.9 0. 0.5 V+76 3 16 6224.3 0.9 2230. 97. 2. V+76 3 17 6224.3 0.9 5006. 3. 2. V+76 3 18 6621.1 0.3 2230. 1.7 0.3 V+76 3 19 6621.1 0.3 4459. 22. 3. V+76 3 20 6621.1 0.3 5006. 75. 3. V+76 3 21 6621.1 0.3 5413. 1.4 0.2 V+76 3 22 6761.7 0.3 0. 1. V+76 3 23 6761.7 0.3 4459. 35. 10. V+76 3 24 7950.0 0.4 4459. 15. V+76 3 25 7950.0 0.4 5006. 65. 7. V+76 3 26 ENDDATA 15 V+76 3 27 ENDSUBENT 3 V+76 399999 SUBENT V+76 4 0 V+76 4 1 BIB 2 12 V+76 4 2 REACTION 31P(P,GAMMA)32S V+76 4 3 COMMENTS LEGENDRE POLYNOMIAL COEFFICIENTS CORRESPONDING TO FITS V+76 4 4 TO MEASURED GAMMA-RAY ANGULAR DISTRIBUTION DATA ARE V+76 4 5 GIVEN ALONG WITH VALUES OF THE MIXING RATIO. DATA ARE V+76 4 6 OBTAINED FROM TABLE III OF THE ORIGINAL PAPER. EP = V+76 4 7 RESONANCE PROTON ENERGY. EXI = ENERGY OF INITIAL STATE V+76 4 8 OF TRANSITION. EXF = ENERGY OF FINAL STATE. A2 = V+76 4 9 COEFFICIENT OF P2 LEGENDRE TERM. A2-ERR = ERROR IN V+76 4 10 A2. A4 = COEFFICIENT OF P4 LEGENDRE TERM. A4-ERR = V+76 4 11 ERROR IN A4. MIX = MIXING RATIO. A BLANK ENTRY V+76 4 12 INDICATES THAT EITHER THE VALUE IS MISSING FROM THE V+76 4 13 TABLE OR IT IS AMBIGUOUS. V+76 4 14 ENDBIB 12 V+76 4 15 DATA 9 41 V+76 4 16 EP EXI EXF A2 A2-ERR A4 V+76 4 17 A4-ERR MIX MIX-ERR V+76 4 18 KEV MEV MEV NO-DIM NO-DIM NO-DIM V+76 4 19 NO-DIM NO-DIM NO-DIM V+76 4 20 1247. 10.07 0. 0.43 0.01 -0.02 V+76 4 21 0.01 V+76 4 22 1247. 10.07 2.23 0.36 0.02 -0.01 V+76 4 23 0.02 -0.02 0.03 V+76 4 24 1247. 10.07 4.28 0.29 0.08 0.01 V+76 4 25 0.08 0.05 0.09 V+76 4 26 1247. 10.07 5.01 -0.03 0.01 0.00 V+76 4 27 0.01 0.06 0.01 V+76 4 28 1247. 10.07 5.41 -0.11 0.02 0.03 V+76 4 29 0.02 0.00 0.03 V+76 4 30 1247. 10.07 6.22 0.33 0.03 0.00 V+76 4 31 0.03 0.02 0.03 V+76 4 32 1247. 6.22 2.23 0.14 0.01 -0.01 V+76 4 33 0.01 0.07 0.03 V+76 4 34 1247. 5.41 2.23 -0.12 0.06 0.07 V+76 4 35 0.07 20. V+76 4 36 1247. 5.01 2.23 -0.23 0.03 -0.02 V+76 4 37 0.03 0.00 0.03 V+76 4 38 1399. 10.22 4.70 0.51 0.07 -0.26 V+76 4 39 0.09 -0.02 0.04 V+76 4 40 1399. 10.22 7.12 -0.25 0.01 -0.04 V+76 4 41 0.01 -0.04 0.01 V+76 4 42 1399. 7.12 2.23 0.38 0.03 0.02 V+76 4 43 0.03 V+76 4 44 1402. 10.22 5.01 0.39 0.01 0.01 V+76 4 45 0.01 0.02 0.02 V+76 4 46 1402. 5.01 2.23 -0.23 0.01 -0.02 V+76 4 47 0.01 0.00 0.02 V+76 4 48 1437. 10.26 2.23 0.44 0.02 -0.25 V+76 4 49 0.02 0.02 0.01 V+76 4 50 1437. 10.26 4.46 0.46 0.01 -0.03 V+76 4 51 0.01 -0.03 0.04 V+76 4 52 1437. 10.26 5.01 -0.52 0.02 0.00 V+76 4 53 0.02 0.11 0.02 V+76 4 54 1437. 10.26 6.41 0.55 0.03 0.00 V+76 4 55 0.04 V+76 4 56 1437. 10.26 6.62 0.46 0.01 -0.02 V+76 4 57 0.01 -0.02 0.04 V+76 4 58 1437. 10.26 6.76 -0.25 0.03 0.01 V+76 4 59 0.03 V+76 4 60 1437. 10.26 7.95 0.31 0.01 -0.03 V+76 4 61 0.01 0.18 0.02 V+76 4 62 1437. 7.95 5.01 -0.15 0.02 0.18 V+76 4 63 0.02 7.9 1.5 V+76 4 64 1437. 6.62 2.23 0.05 0.05 -0.30 V+76 4 65 0.05 V+76 4 66 1437. 6.62 4.46 0.35 0.01 -0.03 V+76 4 67 0.01 0.06 0.02 V+76 4 68 1437. 6.62 5.01 0.32 0.01 0.21 V+76 4 69 0.01 -5.5 0.3 V+76 4 70 1437. 6.41 2.23 0.17 0.09 -0.15 V+76 4 71 0.09 V+76 4 72 1437. 5.41 2.23 0.32 0.04 0.22 V+76 4 73 0.04 V+76 4 74 1581. 10.40 2.23 0.36 0.05 -0.12 V+76 4 75 0.05 0.00 0.06 V+76 4 76 1581. 10.40 4.46 0.43 0.03 -0.02 V+76 4 77 0.03 0.02 0.06 V+76 4 78 1581. 10.40 5.01 0.06 0.01 -0.03 V+76 4 79 0.01 -0.19 0.02 V+76 4 80 1581. 10.40 6.62 0.41 0.01 -0.01 V+76 4 81 0.01 0.05 0.03 V+76 4 82 1581. 10.40 6.76 -0.07 0.05 0.01 V+76 4 83 0.06 V+76 4 84 1581. 10.40 6.85 0.57 0.09 -0.03 V+76 4 85 0.10 V+76 4 86 1581. 10.40 7.95 0.41 0.06 -0.02 V+76 4 87 0.07 0.05 0.11 V+76 4 88 1581. 7.95 5.01 -0.13 0.08 0.29 V+76 4 89 0.09 11. 2. V+76 4 90 1581. 6.85 4.28 0.48 0.04 -0.10 V+76 4 91 0.04 V+76 4 92 1581. 6.76 4.46 -0.04 0.02 -0.03 V+76 4 93 0.03 V+76 4 94 1581. 6.62 2.23 0.02 0.03 -0.28 V+76 4 95 0.03 V+76 4 96 1581. 6.62 4.46 0.35 0.02 -0.02 V+76 4 97 0.02 0.05 0.02 V+76 4 98 1581. 6.62 5.01 0.31 0.01 0.22 V+76 4 99 0.01 -5.5 0.4 V+76 4 100 1581. 5.41 2.23 0.17 0.05 0.12 V+76 4 101 0.06 V+76 4 102 ENDDATA 86 V+76 4 103 ENDSUBENT 4 V+76 499999 SUBENT V+76 5 0 V+76 5 1 BIB 2 10 V+76 5 2 REACTION 31P(P,GAMMA)32S V+76 5 3 COMMENTS LIFETIMES OF 32S BOUND LEVELS MEASURED BY THE DOPPLER- V+76 5 4 -SHIFT ATTENUATION METHOD ARE GIVEN. DATA ARE TAKEN V+76 5 5 FROM TABLE IV. EX = EXCITATION OF LEVEL FOR WHICH THE V+76 5 6 LIFETIME HAS BEEN MEASURED. EI = ENERGY OF INITIAL V+76 5 7 LEVEL OF OBSERVED TRANSITION. EF = ENERGY OF FINAL V+76 5 8 LEVEL. EP = PROTON ENERGY OF RESONANCE. TAU = MEAN V+76 5 9 LIFETIME OF LEVEL. TAU-ERR(+) = POSITIVE LOBE OF TAU V+76 5 10 ERROR BAR. TAU-ERR(-) = NEGATIVE LOBE OF TAU ERROR V+76 5 11 BAR. FSEC = FEMTOSECOND = 10**(-15) SECOND. V+76 5 12 ENDBIB 10 V+76 5 13 DATA 7 8 V+76 5 14 EX EI EF EP TAU TAU-ERR(+) V+76 5 15 TAU-ERR(-) V+76 5 16 KEV MEV MEV KEV FSEC FSEC V+76 5 17 FSEC V+76 5 18 5006. 5.01 2.23 1247. 580. 60. V+76 5 19 40. V+76 5 20 5006. 5.01 2.23 1402. 620. 190. V+76 5 21 90. V+76 5 22 5413. 5.41 2.23 1247. 160. 30. V+76 5 23 30. V+76 5 24 6224. 6.22 2.23 1247. 75. 10. V+76 5 25 10. V+76 5 26 6621. 6.62 5.01 1437. 1000. 350. V+76 5 27 200. V+76 5 28 6621. 6.62 5.01 1581. 950. 350. V+76 5 29 200. V+76 5 30 7950. 7.95 5.01 1437. 115. 20. V+76 5 31 20. V+76 5 32 7950. 7.95 5.01 1581. 145. 20. V+76 5 33 20. V+76 5 34 ENDDATA 20 V+76 5 35 ENDSUBENT 5 V+76 599999 SUBENT V+76 6 0 V+76 6 1 BIB 2 18 V+76 6 2 REACTION 31P(P,GAMMA)32S V+76 6 3 COMMENTS STRENGTHS OF TRANSITIONS BETWEEN SOME BOUND STATES IN V+76 6 4 32S ARE GIVEN. DATA TAKEN FROM TABLE VI OF THE ORIGINAL V+76 6 5 PAPER. EXI = ENERGY OF INITIAL 32S STATE OF TRANSITION. V+76 6 6 J-PI(I) = SPIN/PARITY OF INTIAL STATE. A NEGATIVE V+76 6 7 VALUE INDICATES NEGATIVE PARITY. OTHERWISE PARITY IS V+76 6 8 POSITIVE. EXF = ENERGY OF FINAL 32S STATE. J-PI(F) = V+76 6 9 SPIN/PARITY OF FINAL STATE. B = BRANCHING RATIO OF V+76 6 10 TRANSITION. B-ERR = ERROR IN B. PCT = PERCENT. MIX = V+76 6 11 MIXING RATIO. MIX-ERR = ERROR IN MIX. TS(E1) = E1 V+76 6 12 TRANSITION STRENGTH. TS(E1)-ERR = ERROR IN TS(E1). V+76 6 13 TS(M1) = M1 TRANSITION STRENGTH. TS(M1)-ERR = ERROR V+76 6 14 IN TS(M1). TS(E2) = E2 TRANSITION STRENGTH. TS(E2)-ERR V+76 6 15 = ERROR IN TS(E2). TS(M2) = M2 TRANSITION STRENGTH. V+76 6 16 TS(M2)-ERR = ERROR IN TS(M2). TS(E3) = E3 TRANSITION V+76 6 17 STRENGTH. TS(E3)-ERR = ERROR IN TS(E3). W.U. = V+76 6 18 WEISSKOPF UNITS. A BLANK SPACE INDICATES THAT VALUE IS V+76 6 19 NOT PROVIDED, IS AMBIGUOUS, OR IS IRRELEVANT. V+76 6 20 ENDBIB 18 V+76 6 21 DATA 18 11 V+76 6 22 EXI J-PI(I) EXF J-PI(F) B B-ERR V+76 6 23 MIX MIX-ERR TS(E1) TS(E1)-ERR TS(M1) TS(M1)-ERR V+76 6 24 TS(E2) TS(E2)-ERR TS(M2) TS(M2)-ERR TS(E3) TS(E3)-ERR V+76 6 25 MEV NO-DIM MEV NO-DIM PCT PCT V+76 6 26 NO-DIM NO-DIM W.U. W.U. W.U. W.U. V+76 6 27 W.U. W.U. W.U. W.U. W.U. W.U. V+76 6 28 5.01 -3. 0. 0. 3.4 0.4 V+76 6 29 0. V+76 6 30 20. 5. V+76 6 31 5.01 -3. 2.23 2. 96.6 0.4 V+76 6 32 0.00 0.02 7.2000E-05 1.6000E-05 V+76 6 33 0.02 V+76 6 34 5.41 3. 2.23 2. 100. V+76 6 35 20. 2.0000E-04 V+76 6 36 2.5 0.6 V+76 6 37 6.22 -2. 2.23 2. 97. 2. V+76 6 38 0.07 0.03 2.0000E-04 4.0000E-05 V+76 6 39 0.27 V+76 6 40 6.41 2.23 2. 100. V+76 6 41 V+76 6 42 V+76 6 43 6.62 -4. 2.23 2. 1.7 0.3 V+76 6 44 V+76 6 45 V+76 6 46 6.62 -4. 4.46 4. 22. 3. V+76 6 47 0.06 0.02 2.2000E-05 6.0000E-06 V+76 6 48 0.07 0.05 V+76 6 49 6.62 -4. 5.01 -3. 75. 3. V+76 6 50 -5.5 0.3 1.8000E-04 6.0000E-05 V+76 6 51 9.0 2.5 V+76 6 52 6.62 -4. 5.41 3. 1.4 0.3 V+76 6 53 0.0 0.5 8.0000E-06 4.0000E-06 V+76 6 54 5. V+76 6 55 6.85 4.28 2. 70. 10. V+76 6 56 V+76 6 57 V+76 6 58 7.95 -4. 5.01 -3. 65. 7. V+76 6 59 10. 3. 1.3 V+76 6 60 3.0 0.7 V+76 6 61 ENDDATA 39 V+76 6 62 ENDSUBENT 6 V+76 699999 ENDENTRY 6 V+769999999