ENTRY V+73A 0 V+73A 0 1 SUBENT V+73A 1 0 V+73A 1 1 BIB 13 103 V+73A 1 2 INSTITUTE (FRPAR) V+73A 1 3 REFERENCE (J,NP/A,212,493,1973) V+73A 1 4 AUTHORS (J.VERNOTTE,S.GALES,M.LANGEVIN,J.M.MAISON) V+73A 1 5 TITLE RECHERCHE DE RESONANCES ISOBARIQUES ANALOGUES DANS V+73A 1 6 32S AU MOYEN DES REACTIONS 31P(P,GAMMA)32S, V+73A 1 7 31P(P,P')31P ET 31P(P,ALPHA-0)28SI V+73A 1 8 FACILITIES (VDG) 4-MV VAN DE GRAAFF ACCELERATOR, INSTITUT DE V+73A 1 9 PHYSIQUE NUCLEAIRE D'ORSAY, ORSAY, FRANCE. V+73A 1 10 (VDG) 2-MV VAN DE GRAAFF ACCELERATOR, CENTRE DE V+73A 1 11 RECHERCHES NUCLEAIRES DE STRASBOURG-CRONENBOURG, V+73A 1 12 STRASBOURG, FRANCE. V+73A 1 13 INC-PART (P) PROTONS. V+73A 1 14 TARGETS (P,GAMMA) EXPERIMENT: TARGETS WERE MADE FROM V+73A 1 15 RED PHOSPHORUS EVAPORATED IN A VACUUM ON A V+73A 1 16 0.2-MM-THICK TUNGSTEN SUPPORT. THE TARGETS WERE V+73A 1 17 MOUNTED AT 45 DEGREES RELATIVE TO INCIDENT PROTON V+73A 1 18 BEAM AND THEY WERE COOLED WITH AN AIR JET (AT ORSAY) V+73A 1 19 OR CIRCULATING WATER (AT STRASBOURG). V+73A 1 20 (P,P') AND (P,ALPHA) EXPERIMENT: TARGETS WERE MADE V+73A 1 21 OF RED PHOSPHORUS EVAPORATED ON A 15 MICROGRAM/CM**2 V+73A 1 22 CARBON FOIL. THE TARGETS WERE MOUNTED PERPENDICULAR V+73A 1 23 TO THE INCIDENT PROTON BEAM. V+73A 1 24 METHOD (P,GAMMA) EXPERIMENT: PROTON BEAMS WERE OBTAINED V+73A 1 25 FROM THE 4-MV VAN DE GRAAFF ACCELERATOR AT ORSAY V+73A 1 26 AND THE 2-MV VAN DE GRAAFF ACCELERATOR AT V+73A 1 27 STRASBOUG. THE PROTON BEAMS PASSED THROUGH A TUBE V+73A 1 28 COOLED WITH LIQUID NITROGEN TO REDUCE CARBON BUILD V+73A 1 29 UP ON THE TARGETS. NO CONTAMINATING CONTRIBUTIONS V+73A 1 30 FROM THE 19F(P,ALPHA-GAMMA)16O WERE OBSERVED IN THE V+73A 1 31 MEASUREMENTS. THE PROTON BEAM CURRENTS WERE LIMITED V+73A 1 32 TO 2 MICROAMPS AT ORSAY AND 10 MICROAMPS AT V+73A 1 33 STRASBOURG. IN BOTH CASES THE TARGETS WITHSTOOD V+73A 1 34 THE PROTON BEAMS FOR SEVERAL DAYS WITHOUT DAMAGE. V+73A 1 35 FOR GAMMA-RAY ANGULAR DISTRIBUTION MEASUREMENTS, V+73A 1 36 EITHER NAI DETECTORS OR A GE(LI) DETECTOR COULD BE V+73A 1 37 MOUNTED ON A MOBILE ANGULAR DISTRIBUTION TABLE. IN V+73A 1 38 SUCH MEASUREMENTS, A SINGLE NAI DETECTOR SERVED AS V+73A 1 39 THE MONITOR. A GAMMA-RAY EXCITATION FUNCTION WAS V+73A 1 40 MEASURED OVER THE RANGE EP = 1.24 - 1.60 MEV BY V+73A 1 41 OBSERVING SIGNALS DUE TO GAMMA RAYS WITH ENERGIES V+73A 1 42 EXCEEDING 3.1 MEV. THIS MEASUREMENT WAS DONE USING V+73A 1 43 A 12.7-CM X 12.7-CM NAI DETECTOR PLACED AT 55 V+73A 1 44 DEGREES RELATIVE TO THE INCIDENT PROTON BEAM. THE V+73A 1 45 P TARGET WAS 11 MICROGRAM/CM**2 FOR MEASUREMENTS V+73A 1 46 BELOW EP = 1.4 MEV AND 23 MICROGRAM/CM**2 FOR V+73A 1 47 MEASUREMENTS ABOVE EP = 1.4 MEV. CALIBRATION OF V+73A 1 48 THE PROTON ENERGY SCALE WAS PERFORMED USING THE V+73A 1 49 EP = 1747.5-KEV RESONANCE IN 13C(P,GAMMA)14N. FOR V+73A 1 50 DETERMINATION OF THE SPECTRA OF DE-EXCITATION V+73A 1 51 GAMMA RAYS AT THE RESONANCES, GE(LI) DETECTORS V+73A 1 52 WERE USED. THEY WERE CALIBRATED FOR ENERGY AND V+73A 1 53 EFFICIENCY USING A STANDARD 56CO SOURCE FOR GAMMA- V+73A 1 54 RAY ENERGIES BELOW 3.2 MEV. FOR HIGHER ENERGY V+73A 1 55 GAMMA-RAYS, USE WAS MADE OF THE KNOWN GAMMA-RAY V+73A 1 56 DECAY MODE OF THE EP = 1555 KEV RESONANCE IN THE V+73A 1 57 31P(P,GAMMA)32S REACTION, AS AVAILABLE IN THE V+73A 1 58 LITERATURE FROM EARLIER WORK. V+73A 1 59 (P,P') AND (P,ALPHA-0) EXPERIMENT: PROTON BEAMS V+73A 1 60 WERE OBTAINED FROM THE 4-MV ORSAY VAN DE GRAAFF V+73A 1 61 ACCELERATOR. THE BEAM WAS FOCUSSED THROUGH A V+73A 1 62 2-MM DIAMETER APERTURE ONTO A TARGET OF RED V+73A 1 63 PHOSPHORUS ON CARBON BACKING. THIS TARGET WAS V+73A 1 64 SITUATED IN A 50-CM DIAMETER SCATTERING CHAMBER. V+73A 1 65 THE BEAM DUMP WAS A FARADAY CAGE ENVELOPED IN V+73A 1 66 GRAPHITE AND LOCATED 150 CM BEYOND THE TARGET. V+73A 1 67 THE PROTON ENERGY AND RESOLUTION WERE MEASURED V+73A 1 68 AT THE 13C(P,GAMMA)14 EP = 1747.6 KEV RESONANCE. V+73A 1 69 THE TARGET ATOMS WERE MEASURED USING RUTHERFORD V+73A 1 70 SCATTERING OF PROTONS AT ENERGIES BELOW THE V+73A 1 71 RESONANCES. THE TARGETS WERE FOUND TO SURVIVE V+73A 1 72 WELL DURING SEVERAL DAYS OF EXPOSURE AT BEAM V+73A 1 73 CURRENTS BELOW 0.5 MICROAMP. THE SURFACE BARRIER V+73A 1 74 DETECTORS WERE USED TO MEASURE EMITTED PROTONS V+73A 1 75 AND ALPHA PARTICLES AT ANGLES BETWEEN 124 - 160 V+73A 1 76 DEGREES. CONVENTIONAL ELECTRONICS COMPONENTS V+73A 1 77 WERE USED. GAMMA-RAYS WITH ENERGIES ABOVE 3 V+73A 1 78 MEV WERE MEASURED SIMULTANEOUSLY USING A 3.8-CM V+73A 1 79 X 3.8-CM NAI DETECTOR. V+73A 1 80 FURTHER DETAILS ON THIS EXPERIMENT CAN BE FOUND IN V+73A 1 81 THE ORIGINAL PAPER. V+73A 1 82 DETECTORS (SCINT) SEVERAL 12.7-CM X 12.7-CM NAI(TL) V+73A 1 83 SCINTILLATION CRYSTAL DETECTORS. THE DETECTORS V+73A 1 84 WERE SHIELDED WITH LEAD. V+73A 1 85 (SCINT) A 3.8-CM X 3.8-CM NAI(TL) SCINTILLATION V+73A 1 86 CRYSTAL DETECTOR (ORSAY). V+73A 1 87 (GELI) 37-CM**3 GE(LI) DETECTOR WITH 3.5 KEV V+73A 1 88 RESOLUTION FOR 1.33 MEV 60CO GAMMA RAYS AND V+73A 1 89 15 KEV RESOLUTION FOR 10 MEV GAMMA RAYS (ORSAY). V+73A 1 90 (GELI) 80-CM**3 GE(LI) DETECTOR WITH 2.5 KEV V+73A 1 91 RESOLUTION FOR 1.33 MEV 60CO GAMMA RAYS AND V+73A 1 92 11 KEV FOR 10 MEV GAMMA RAYS (STRASBOURG). V+73A 1 93 (SOLST) THREE SURFACE BARRIER DETECTORS WERE USED V+73A 1 94 FOR CHARGED-PARTICLE MEASUREMENTS. EACH SUBTENDED V+73A 1 95 A SOLID ANGLE OF 0.55 X 10**(-3) STERADIAN. V+73A 1 96 MONITORS (CI) CURRENT INTEGRATORS. V+73A 1 97 (SCINT) 12.7-CM X 12.7-CM NAI(TL) SCINTILLATION V+73A 1 98 CRYSTAL DETECTOR. V+73A 1 99 CORRECTION CORRECTIONS FOR DETECTOR EFFICIENCY WERE APPLIED V+73A 1 100 ERR-ANALYS THE ESTIMATED UNCERTAINTY IN THE GE(LI) DETECTOR V+73A 1 101 EFFICIENCY CALIBRATION WAS 10 PERCENT. FURTHER V+73A 1 102 DETAILS ON THE ERROR ANALYSIS ARE GIVEN IN THE V+73A 1 103 ORIGINAL PAPER. V+73A 1 104 COMMENTS THE ORIGINAL PAPER IS WRITTEN IN FRENCH. V+73A 1 105 ENDBIB 103 V+73A 1 106 ENDSUBENT 1 V+73A 199999 SUBENT V+73A 2 0 V+73A 2 1 BIB 2 9 V+73A 2 2 REACTION 31P(P,GAMMA)32S V+73A 2 3 COMMENTS RESONANCE ENERGIES AND STRENGTHS ARE GIVEN. DATA ARE V+73A 2 4 OBTAINED FROM TABLE 1 OF THE ORIGINAL PAPER. EP = V+73A 2 5 RESONANCE PROTON ENERGY. EP-ERR = ERROR IN EP. S = V+73A 2 6 RESONANCE STRENGTH = (2J+1)*GAM(P)*GAM(G)/GAM(T), V+73A 2 7 WHERE J = RESONANCE SPIN, GAM(P) = PROTON WIDTH, V+73A 2 8 GAM(G) = GAMMA-RAY WIDTH, AND GAM(T) = TOTAL WIDTH. V+73A 2 9 S-ERR = ERROR IN S. BLANK ENTRIES IMPLY DATA ARE NOT V+73A 2 10 AVAILABLE OR ARE AMBIGUOUS. PCT = PERCENT. V+73A 2 11 ENDBIB 9 V+73A 2 12 DATA 4 14 V+73A 2 13 EP EP-ERR S S-ERR V+73A 2 14 KEV KEV EV PCT V+73A 2 15 1247.4 1.5 11.8 20. V+73A 2 16 1279.1 1.5 0.25 20. V+73A 2 17 1399.3 0.8 1.3 20. V+73A 2 18 1401.9 1.5 3.8 20. V+73A 2 19 1405.1 1.5 0.25 40. V+73A 2 20 1410.6 0.8 1.0 20. V+73A 2 21 1437.3 1.5 8.3 20. V+73A 2 22 1469.0 1.5 0.15 20. V+73A 2 23 1472.1 1.5 1.5 20. V+73A 2 24 1474.3 1.5 0.38 20. V+73A 2 25 1514.7 1.5 2.2 20. V+73A 2 26 1555.4 1.5 8.7 20. V+73A 2 27 1581.1 1.5 7.9 20. V+73A 2 28 1585.2 1.5 V+73A 2 29 ENDDATA 16 V+73A 2 30 ENDSUBENT 2 V+73A 299999 SUBENT V+73A 3 0 V+73A 3 1 BIB 2 13 V+73A 3 2 REACTION 31P(P,GAMMA)32S V+73A 3 3 COMMENTS BRANCHING FACTORS FOR THE GAMMA-RAY DECAY OF 32S V+73A 3 4 RESONANCES ARE GIVEN. THE DATA ARE OBTAINED FROM V+73A 3 5 TABLE 2 OF ORIGINAL PAPER. EP = RESONANCE PROTON V+73A 3 6 ENERGY. EX = EXCITATION ENERGY IN 32S. EX-ERR = V+73A 3 7 ERROR IN EX. EI = ENERGY OF INITIAL STATE FOR V+73A 3 8 TRANSITION. J-PI(I) = SPIN/PARITY OF INITIAL STATE. V+73A 3 9 A NEGATIVE VALUE SIGNIFIES NEGATIVE PARITY. V+73A 3 10 OTHERWISE PARITY IS POSITIVE. EF = ENERGY OF FINAL V+73A 3 11 STATE. J-PI(F) = SPIN/PARITY FOR FINAL STATE. B = V+73A 3 12 GAMMA-RAY DECAY BRANCHING FACTOR. A BLANK ENTRY V+73A 3 13 SIGNIFIES THAT NO VALUE IS PROVIDED IN THE TABLE V+73A 3 14 OR VALUES ARE AMBIGUOUS. PCT = PERCENT. V+73A 3 15 ENDBIB 13 V+73A 3 16 DATA 8 88 V+73A 3 17 EP EX EX-ERR EI J-PI(I) EF V+73A 3 18 J-PI(F) B V+73A 3 19 MEV MEV MEV MEV NO-DIM MEV V+73A 3 20 NO-DIM PCT V+73A 3 21 1.247 10.072 0.002 10.072 -2. 0. V+73A 3 22 0. 1.8 V+73A 3 23 1.247 10.072 0.002 10.072 -2. 2.23 V+73A 3 24 2. 28. V+73A 3 25 1.247 10.072 0.002 10.072 -2. 4.28 V+73A 3 26 2. 1.6 V+73A 3 27 1.247 10.072 0.002 10.072 -2. 4.70 V+73A 3 28 1. 0.9 V+73A 3 29 1.247 10.072 0.002 10.072 -2. 5.01 V+73A 3 30 -3. 12. V+73A 3 31 1.247 10.072 0.002 10.072 -2. 5.41 V+73A 3 32 3. 4. V+73A 3 33 1.247 10.072 0.002 10.072 -2. 6.22 V+73A 3 34 -2. 50. V+73A 3 35 1.247 10.072 0.002 10.072 -2. 7.11 V+73A 3 36 0.7 V+73A 3 37 1.247 10.072 0.002 10.072 -2. 8.13 V+73A 3 38 0.3 V+73A 3 39 1.247 10.072 0.002 10.072 -2. 8.30 V+73A 3 40 0.4 V+73A 3 41 1.247 10.072 0.002 10.072 -2. 8.50 V+73A 3 42 0.2 V+73A 3 43 1.279 10.102 0.002 10.102 2.23 V+73A 3 44 2. 46. V+73A 3 45 1.279 10.102 0.002 10.102 4.28 V+73A 3 46 2. 14. V+73A 3 47 1.279 10.102 0.002 10.102 4.46 V+73A 3 48 4. 18. V+73A 3 49 1.279 10.102 0.002 10.102 5.01 V+73A 3 50 -3. 12. V+73A 3 51 1.279 10.102 0.002 10.102 5.41 V+73A 3 52 3. 6. V+73A 3 53 1.279 10.102 0.002 10.102 5.55 V+73A 3 54 2. 4. V+73A 3 55 1.399 10.219 0.002 10.219 3. 2.23 V+73A 3 56 2. 12. V+73A 3 57 1.399 10.219 0.002 10.219 3. 4.28 V+73A 3 58 2. 7. V+73A 3 59 1.399 10.219 0.002 10.219 3. 4.46 V+73A 3 60 4. 8. V+73A 3 61 1.399 10.219 0.002 10.219 3. 4.70 V+73A 3 62 1. 22. V+73A 3 63 1.399 10.219 0.002 10.219 3. 5.41 V+73A 3 64 3. 4. V+73A 3 65 1.399 10.219 0.002 10.219 3. 5.55 V+73A 3 66 2. 8. V+73A 3 67 1.399 10.219 0.002 10.219 3. 7.11 V+73A 3 68 39. V+73A 3 69 1.402 10.222 0.002 10.222 -3. 2.23 V+73A 3 70 2. 12. V+73A 3 71 1.402 10.222 0.002 10.222 -3. 4.46 V+73A 3 72 4. 22. V+73A 3 73 1.402 10.222 0.002 10.222 -3. 5.01 V+73A 3 74 -3. 66. V+73A 3 75 1.411 10.230 0.002 10.230 1. 0. V+73A 3 76 0. 7. V+73A 3 77 1.411 10.230 0.002 10.230 1. 2.23 V+73A 3 78 2. 7. V+73A 3 79 1.411 10.230 0.002 10.230 1. 3.78 V+73A 3 80 0. 2. V+73A 3 81 1.411 10.230 0.002 10.230 1. 4.28 V+73A 3 82 2. 11. V+73A 3 83 1.411 10.230 0.002 10.230 1. 4.70 V+73A 3 84 1. 8. V+73A 3 85 1.411 10.230 0.002 10.230 1. 5.41 V+73A 3 86 3. 5. V+73A 3 87 1.411 10.230 0.002 10.230 1. 5.55 V+73A 3 88 2. 4. V+73A 3 89 1.411 10.230 0.002 10.230 1. 6.22 V+73A 3 90 -2. 5. V+73A 3 91 1.411 10.230 0.002 10.230 1. 7.00 V+73A 3 92 41. V+73A 3 93 1.411 10.230 0.002 10.230 1. 7.11 V+73A 3 94 6. V+73A 3 95 1.411 10.230 0.002 10.230 1. 7.54 V+73A 3 96 4. V+73A 3 97 1.437 10.256 0.002 10.256 -4. 2.23 V+73A 3 98 2. 0.6 V+73A 3 99 1.437 10.256 0.002 10.256 -4. 4.46 V+73A 3 100 4. 8. V+73A 3 101 1.437 10.256 0.002 10.256 -4. 5.01 V+73A 3 102 -3. 4. V+73A 3 103 1.437 10.256 0.002 10.256 -4. 5.41 V+73A 3 104 3. 0.4 V+73A 3 105 1.437 10.256 0.002 10.256 -4. 6.41 V+73A 3 106 1. V+73A 3 107 1.437 10.256 0.002 10.256 -4. 6.62 V+73A 3 108 -4. 75. V+73A 3 109 1.437 10.256 0.002 10.256 -4. 6.76 V+73A 3 110 3.2 V+73A 3 111 1.437 10.256 0.002 10.256 -4. 7.35 V+73A 3 112 1.0 V+73A 3 113 1.437 10.256 0.002 10.256 -4. 7.70 V+73A 3 114 0.5 V+73A 3 115 1.437 10.256 0.002 10.256 -4. 7.95 V+73A 3 116 6.4 V+73A 3 117 1.469 10.287 0.002 10.287 -3. 2.23 V+73A 3 118 2. 11. V+73A 3 119 1.469 10.287 0.002 10.287 -3. 4.46 V+73A 3 120 4. 15. V+73A 3 121 1.469 10.287 0.002 10.287 -3. 5.01 V+73A 3 122 -3. 74. V+73A 3 123 1.472 10.289 0.002 10.289 -2. 0. V+73A 3 124 0. 2.2 V+73A 3 125 1.472 10.289 0.002 10.289 -2. 2.23 V+73A 3 126 2. 32. V+73A 3 127 1.472 10.289 0.002 10.289 -2. 4.28 V+73A 3 128 2. 1.5 V+73A 3 129 1.472 10.289 0.002 10.289 -2. 5.01 V+73A 3 130 -3. 19. V+73A 3 131 1.472 10.289 0.002 10.289 -2. 5.41 V+73A 3 132 3. 1.5 V+73A 3 133 1.472 10.289 0.002 10.289 -2. 5.78 V+73A 3 134 -1. 1.6 V+73A 3 135 1.472 10.289 0.002 10.289 -2. 6.22 V+73A 3 136 -2. 36. V+73A 3 137 1.472 10.289 0.002 10.289 -2. 6.67 V+73A 3 138 2.3 V+73A 3 139 1.472 10.289 0.002 10.289 -2. 7.00 V+73A 3 140 1.5 V+73A 3 141 1.472 10.289 0.002 10.289 -2. 8.13 V+73A 3 142 2.4 V+73A 3 143 1.515 10.331 0.002 10.331 -1. 0. V+73A 3 144 0. 12. V+73A 3 145 1.515 10.331 0.002 10.331 -1. 2.23 V+73A 3 146 2. 61. V+73A 3 147 1.515 10.331 0.002 10.331 -1. 4.70 V+73A 3 148 1. 15. V+73A 3 149 1.515 10.331 0.002 10.331 -1. 5.55 V+73A 3 150 2. 6. V+73A 3 151 1.515 10.331 0.002 10.331 -1. 8.13 V+73A 3 152 6. V+73A 3 153 1.555 10.369 0.002 10.369 2. 0. V+73A 3 154 0. 0.5 V+73A 3 155 1.555 10.369 0.002 10.369 2. 2.23 V+73A 3 156 2. 11. V+73A 3 157 1.555 10.369 0.002 10.369 2. 4.28 V+73A 3 158 2. 40. V+73A 3 159 1.555 10.369 0.002 10.369 2. 4.70 V+73A 3 160 1. 11. V+73A 3 161 1.555 10.369 0.002 10.369 2. 5.01 V+73A 3 162 -3. 2. V+73A 3 163 1.555 10.369 0.002 10.369 2. 5.41 V+73A 3 164 3. 12. V+73A 3 165 1.555 10.369 0.002 10.369 2. 5.55 V+73A 3 166 2. 4. V+73A 3 167 1.555 10.369 0.002 10.369 2. 6.22 V+73A 3 168 -2. 3. V+73A 3 169 1.555 10.369 0.002 10.369 2. 6.67 V+73A 3 170 13. V+73A 3 171 1.555 10.369 0.002 10.369 2. 7.19 V+73A 3 172 1. V+73A 3 173 1.555 10.369 0.002 10.369 2. 7.49 V+73A 3 174 2. V+73A 3 175 1.581 10.395 0.002 10.395 -4. 2.23 V+73A 3 176 2. 0.5 V+73A 3 177 1.581 10.395 0.002 10.395 -4. 4.46 V+73A 3 178 4. 1.3 V+73A 3 179 1.581 10.395 0.002 10.395 -4. 5.01 V+73A 3 180 -3. 5.8 V+73A 3 181 1.581 10.395 0.002 10.395 -4. 6.22 V+73A 3 182 -2. 0.7 V+73A 3 183 1.581 10.395 0.002 10.395 -4. 6.62 V+73A 3 184 -4. 83. V+73A 3 185 1.581 10.395 0.002 10.395 -4. 6.76 V+73A 3 186 2.3 V+73A 3 187 1.581 10.395 0.002 10.395 -4. 6.85 V+73A 3 188 1.0 V+73A 3 189 1.581 10.395 0.002 10.395 -4. 7.70 V+73A 3 190 0.5 V+73A 3 191 1.581 10.395 0.002 10.395 -4. 7.95 V+73A 3 192 4.9 V+73A 3 193 1.585 10.399 0.002 10.399 -0. 5.78 V+73A 3 194 -1. 76. V+73A 3 195 1.585 10.399 0.002 10.399 -0. 8.13 V+73A 3 196 24. V+73A 3 197 ENDDATA 180 V+73A 3 198 ENDSUBENT 3 V+73A 399999 SUBENT V+73A 4 0 V+73A 4 1 BIB 2 5 V+73A 4 2 REACTION 31P(P,GAMMA)32S V+73A 4 3 COMMENTS MEASURED EXCITATION ENERGIES OF BOUND LEVELS IN 32S V+73A 4 4 ARE GIVEN. DATA ARE OBTAINED FROM TABLE 3 OF ORIGINAL V+73A 4 5 REFERENCE. EX = EXCITATION ENERGY. EX-ERR = ERROR IN V+73A 4 6 EX. V+73A 4 7 ENDBIB 5 V+73A 4 8 DATA 2 10 V+73A 4 9 EX EX-ERR V+73A 4 10 KEV KEV V+73A 4 11 2231.1 1.0 V+73A 4 12 3778.1 1.4 V+73A 4 13 4280.8 1.0 V+73A 4 14 4696.0 1.0 V+73A 4 15 5007.8 1.4 V+73A 4 16 5413.8 1.4 V+73A 4 17 5550.3 1.7 V+73A 4 18 7000.8 1.4 V+73A 4 19 7112.8 1.4 V+73A 4 20 7536.0 1.4 V+73A 4 21 ENDDATA 12 V+73A 4 22 ENDSUBENT 4 V+73A 499999 SUBENT V+73A 5 0 V+73A 5 1 BIB 2 9 V+73A 5 2 REACTION 31P(P,GAMMA)32S V+73A 5 3 COMMENTS COEFFICIENTS OF LEGENDRE-POLYNOMIAL FITS TO GAMMA- V+73A 5 4 RAY ANGULAR DISTRIBUTION DATA ARE GIVEN. DATA ARE V+73A 5 5 OBTAINED FROM TABLE 4 OF THE ORIGINAL PAPER. EP = V+73A 5 6 RESONANCE PROTON ENERGY. EI = ENERGY OF INITIAL V+73A 5 7 32S LEVEL FOR TRANSITION. EF = ENERGY OF FINAL V+73A 5 8 LEVEL. A2 = COEFFICIENT OF P2 LEGENDRE POLYNOMIAL V+73A 5 9 TERM. A2-ERR = ERROR IN A2. A4 = COEFFICIENT OF V+73A 5 10 P4 LEGENDRE POLYNOMIAL TERM. A4-ERR = ERROR IN A4. V+73A 5 11 ENDBIB 9 V+73A 5 12 DATA 7 31 V+73A 5 13 EP EI EF A2 A2-ERR A4 V+73A 5 14 A4-ERR V+73A 5 15 KEV MEV MEV NO-DIM NO-DIM NO-DIM V+73A 5 16 NO-DIM V+73A 5 17 1247. 10.07 0. 0.50 0.03 -0.07 V+73A 5 18 0.04 V+73A 5 19 1247. 10.07 2.23 0.43 0.02 -0.04 V+73A 5 20 0.03 V+73A 5 21 1247. 10.07 5.01 -0.02 0.03 -0.06 V+73A 5 22 0.03 V+73A 5 23 1247. 10.07 6.22 0.35 0.03 -0.06 V+73A 5 24 0.03 V+73A 5 25 1247. 6.22 2.23 0.21 0.02 -0.04 V+73A 5 26 0.02 V+73A 5 27 1247. 5.01 2.23 -0.17 0.03 -0.03 V+73A 5 28 0.03 V+73A 5 29 1399. 10.22 2.23 -0.76 0.08 0.09 V+73A 5 30 0.06 V+73A 5 31 1399. 10.22 4.70 0.52 0.07 -0.27 V+73A 5 32 0.09 V+73A 5 33 1399. 10.22 7.11 -0.20 0.03 -0.00 V+73A 5 34 0.03 V+73A 5 35 1399. 7.11 2.23 0.28 0.05 -0.11 V+73A 5 36 0.06 V+73A 5 37 1402. 10.22 2.23 -0.19 0.02 -0.01 V+73A 5 38 0.01 V+73A 5 39 1402. 10.22 4.46 -0.03 0.02 -0.04 V+73A 5 40 0.02 V+73A 5 41 1402. 10.22 5.01 0.37 0.05 -0.03 V+73A 5 42 0.05 V+73A 5 43 1411. 10.23 0. -0.08 0.03 0.03 V+73A 5 44 0.02 V+73A 5 45 1411. 10.23 4.28 0.04 0.02 -0.03 V+73A 5 46 0.02 V+73A 5 47 1411. 10.23 7.00 -0.05 0.03 -0.03 V+73A 5 48 0.03 V+73A 5 49 1411. 7.00 2.23 0.02 0.02 -0.04 V+73A 5 50 0.02 V+73A 5 51 1437. 10.26 4.46 0.51 0.09 -0.02 V+73A 5 52 0.10 V+73A 5 53 1437. 10.26 5.01 -0.54 0.08 0.04 V+73A 5 54 0.08 V+73A 5 55 1437. 10.26 6.62 0.42 0.03 -0.01 V+73A 5 56 0.04 V+73A 5 57 1437. 6.62 5.01 0.27 0.02 0.25 V+73A 5 58 0.02 V+73A 5 59 1437. 6.62 4.46 0.25 0.02 0.07 V+73A 5 60 0.03 V+73A 5 61 1472. 10.29 2.23 0.42 0.04 -0.09 V+73A 5 62 0.05 V+73A 5 63 1472. 10.29 5.01 0.16 0.02 -0.10 V+73A 5 64 0.03 V+73A 5 65 1472. 10.29 6.22 0.22 0.02 -0.05 V+73A 5 66 0.02 V+73A 5 67 1472. 6.22 2.23 0.23 0.02 -0.09 V+73A 5 68 0.03 V+73A 5 69 1472. 5.01 2.23 -0.18 0.04 -0.07 V+73A 5 70 0.04 V+73A 5 71 1581. 10.40 5.01 0.04 0.05 0.02 V+73A 5 72 0.09 V+73A 5 73 1581. 10.40 6.62 0.38 0.04 -0.04 V+73A 5 74 0.05 V+73A 5 75 1581. 6.62 5.01 0.28 0.03 0.18 V+73A 5 76 0.03 V+73A 5 77 1581. 6.62 4.46 0.23 0.04 -0.03 V+73A 5 78 0.04 V+73A 5 79 ENDDATA 66 V+73A 5 80 ENDSUBENT 5 V+73A 599999 SUBENT V+73A 6 0 V+73A 6 1 BIB 2 12 V+73A 6 2 REACTION 31P(P,GAMMA)32S V+73A 6 3 COMMENTS SPINS AND PARITIES OF RESONANT STATES AND GAMMA-RAY V+73A 6 4 TRANSITION MULTIPOLE MIXING RATIOS ARE GIVEN. DATA V+73A 6 5 OBTAINED FROM TABLE 5 OF THE ORIGINAL PAPER. EP = V+73A 6 6 PROTON ENERGY OF THE RESONANCE. J-PI = SPIN/PARITY V+73A 6 7 OF RESONANT STATE. A NEGATIVE SIGN INDICATES NEGATIVE V+73A 6 8 PARITY. OTHERWISE, PARITY IS POSITIVE. EI = ENERGY V+73A 6 9 OF INITIAL STATE OF GAMMA-RAY TRANSITION. EF = FINAL V+73A 6 10 STATE OF TRANSITION. J-PI(F) = SPIN/PARITY OF FINAL V+73A 6 11 STATE. MIX = MULTIPOLE MIXING FACTOR. MIX-ERR = V+73A 6 12 ERROR IN MIX. A BLANK SPACE INDICATES THAT VALUE V+73A 6 13 IS NOT AVAILABLE IN THE TABLE OR IS AMBIGUOUS. V+73A 6 14 ENDBIB 12 V+73A 6 15 DATA 7 27 V+73A 6 16 EP J-PI EI EF J-PI(F) MIX V+73A 6 17 KEV NO-DIM MEV MEV NO-DIM NO-DIM V+73A 6 18 MIX-ERR V+73A 6 19 NO-DIM V+73A 6 20 1247. -2. 10.07 0. 0. V+73A 6 21 V+73A 6 22 1247. -2. 10.07 2.23 2. -0.10 V+73A 6 23 0.02 V+73A 6 24 1247. -2. 10.07 5.01 -3. 0.08 V+73A 6 25 0.05 V+73A 6 26 1247. -2. 10.07 6.22 -2. -0.02 V+73A 6 27 0.02 V+73A 6 28 1247. -2. 5.01 2.23 2. -0.03 V+73A 6 29 0.02 V+73A 6 30 1247. -2. 6.22 2.23 2. -0.05 V+73A 6 31 0.04 V+73A 6 32 1399. 3. 10.22 2.23 2. V+73A 6 33 V+73A 6 34 1399. 3. 10.22 4.70 1. -0.04 V+73A 6 35 0.06 V+73A 6 36 1399. 3. 10.22 7.11 2. -0.06 V+73A 6 37 0.03 V+73A 6 38 1399. 3. 7.11 2.23 2. V+73A 6 39 V+73A 6 40 1402. -3. 10.22 2.23 2. 0.07 V+73A 6 41 0.01 V+73A 6 42 1402. -3. 10.22 4.46 4. 0.07 V+73A 6 43 0.02 V+73A 6 44 1402. -3. 10.22 5.01 -3. 0.02 V+73A 6 45 0.05 V+73A 6 46 1411. 1. 10.23 0. 0. V+73A 6 47 V+73A 6 48 1411. 1. 10.23 7.00 1. V+73A 6 49 V+73A 6 50 1437. -4. 10.26 4.46 4. -0.07 V+73A 6 51 0.13 V+73A 6 52 1437. -4. 10.26 5.01 -3. 0.15 V+73A 6 53 0.03 V+73A 6 54 1437. -4. 10.26 6.62 -4. 0.03 V+73A 6 55 0.02 V+73A 6 56 1437. -4. 6.62 5.01 -3. -6.2 V+73A 6 57 0.3 V+73A 6 58 1437. -4. 6.62 4.46 4. 0.21 V+73A 6 59 0.05 V+73A 6 60 1472. -2. 10.29 2.23 2. -0.11 V+73A 6 61 0.04 V+73A 6 62 1472. -2. 10.29 5.01 -3. 0.29 V+73A 6 63 0.06 V+73A 6 64 1472. -2. 10.29 6.22 -2. 0.10 V+73A 6 65 0.04 V+73A 6 66 1581. -4. 10.40 5.01 -3. -0.21 V+73A 6 67 0.04 V+73A 6 68 1581. -4. 10.40 6.62 -2. 0.05 V+73A 6 69 0.04 V+73A 6 70 1581. -4. 6.62 5.01 -3. -5.7 V+73A 6 71 0.03 V+73A 6 72 1581. -4. 6.62 4.46 4. 0.24 V+73A 6 73 0.04 V+73A 6 74 ENDDATA 58 V+73A 6 75 ENDSUBENT 6 V+73A 699999 SUBENT V+73A 7 0 V+73A 7 1 BIB 2 10 V+73A 7 2 REACTION 31P(P,P)31P V+73A 7 3 COMMENTS CHARACTERISTICS OF RESONANCES IN THE ELASTIC V+73A 7 4 SCATTERING OF PROTONS FROM 31P. EP = RESONANCE V+73A 7 5 PROTON ENERGY. J-PI = SPIN/PARITY OF THE RESONANCE. V+73A 7 6 A NEGATIVE VALUE INDICATES NEGATIVE PARITY. V+73A 7 7 OTHERWISE, PARITY IS POSITIVE. GAM(P) = PROTON V+73A 7 8 WIDTH. GAM(P)-ERR = ERROR IN GAM(P). GAM(T) = TOTAL V+73A 7 9 WIDTH. GAM(T)-ERR = ERROR IN GAM(T). A BLANK ENTRY V+73A 7 10 SIGNIFIES THAT VALUE IS NOT AVAILABLE OR AMBIGUOUS. V+73A 7 11 DATA OBTAINED FROM TABLE 6 OF THE ORIGINAL PAPER. V+73A 7 12 ENDBIB 10 V+73A 7 13 DATA 6 12 V+73A 7 14 EP J-PI GAM(P) GAM(P)-ERR GAM(T) GAM(T)-ERR V+73A 7 15 KEV NO-DIM EV EV EV EV V+73A 7 16 1247.4 -2. 1600. 240. 1600. 240. V+73A 7 17 1399.3 3. 10. 10. V+73A 7 18 1401.9 -3. 16. 6. 65. 25. V+73A 7 19 1410.6 1. 25. 10. 25. 10. V+73A 7 20 1437.3 -4. 45. 20. 45. 20. V+73A 7 21 1469.0 3. 9. 4. 180. 60. V+73A 7 22 1472.1 -2. 125. 20. 125. 20. V+73A 7 23 1474.3 2. 15. 105. V+73A 7 24 1514.7 -1. 3800. 600. 7600. 800. V+73A 7 25 1555.4 2. 30. 10. 30. 10. V+73A 7 26 1581.1 -4. 25. 25. V+73A 7 27 1585.2 -0. 8300. 1300. 8300. 1300. V+73A 7 28 ENDDATA 14 V+73A 7 29 ENDSUBENT 7 V+73A 799999 SUBENT V+73A 8 0 V+73A 8 1 BIB 2 12 V+73A 8 2 REACTION 31P(P,GAMMA)32S V+73A 8 3 COMMENTS ELECTROMAGNETIC TRANSITION STRENGTHS ARE GIVEN. DATA V+73A 8 4 OBTAINED FROM TABLE 8 OF THE ORIGINAL PAPER. EI = V+73A 8 5 ENERGY OF INITIAL 32S STATE FOR TRANSITION. EF = V+73A 8 6 ENERGY OF FINAL STATE. TS(E1) = E1 TRANSITION V+73A 8 7 STRENGTH. TS(E1)-ERR = ERROR IN TS(E1). TS(M1) = V+73A 8 8 M1 TRANSITION STRENGTH. TS(M1)-ERR = ERROR IN V+73A 8 9 TS(M1). TS(E2) = E2 TRANSITION STRENGTH. TS(E2)-ERR V+73A 8 10 = ERROR IN TS(E2). TS(M2) = M2 TRANSITION STRENGTH. V+73A 8 11 TS(M2)-ERR = ERROR IN TS(M2). W.U. = WEISSKOPF UNITS. V+73A 8 12 A BLANK ENTRY INDICATES THAT VALUE IS MISSING FROM V+73A 8 13 TABLE, IS AMBIGUOUS, OR DOES NOT APPLY. V+73A 8 14 ENDBIB 12 V+73A 8 15 DATA 10 80 V+73A 8 16 EI EF TS(E1) TS(E1)-ERR TS(M1) TS(M1)-ERR V+73A 8 17 TS(E2) TS(E2)-ERR TS(M2) TS(M2)-ERR V+73A 8 18 MEV MEV W.U. W.U. W.U. W.U. V+73A 8 19 W.U. W.U. W.U. W.U. V+73A 8 20 10.072 0. V+73A 8 21 2.8 1.5 V+73A 8 22 10.072 2.23 2.0000E-03 5.0000E-04 V+73A 8 23 1.6 0.5 V+73A 8 24 10.072 4.28 3.0000E-04 1.6000E-04 V+73A 8 25 V+73A 8 26 10.072 4.70 2.0000E-04 1.0000E-04 V+73A 8 27 V+73A 8 28 10.072 5.01 0.105 0.025 V+73A 8 29 0.13 0.11 V+73A 8 30 10.072 5.41 1.4000E-03 8.0000E-04 V+73A 8 31 V+73A 8 32 10.072 6.22 1.00 0.25 V+73A 8 33 0.13 0.13 V+73A 8 34 10.072 7.11 9.0000E-04 5.0000E-04 V+73A 8 35 V+73A 8 36 10.072 8.13 1.4000E-03 8.0000E-04 V+73A 8 37 V+73A 8 38 10.072 8.30 2.5000E-03 1.5000E-03 0.081 0.044 V+73A 8 39 V+73A 8 40 10.072 8.50 0.059 0.030 V+73A 8 41 V+73A 8 42 10.219 2.23 2.0000E-03 1.1000E-03 V+73A 8 43 0.01 0.005 V+73A 8 44 10.219 4.28 3.0000E-03 1.6000E-03 V+73A 8 45 V+73A 8 46 10.219 4.46 3.8000E-03 2.1000E-03 V+73A 8 47 V+73A 8 48 10.219 4.70 V+73A 8 49 1.6 0.4 V+73A 8 50 10.219 5.41 3.2000E-03 1.7000E-03 V+73A 8 51 V+73A 8 52 10.219 5.55 7.0000E-03 3.8000E-03 V+73A 8 53 V+73A 8 54 10.219 7.11 0.116 0.027 V+73A 8 55 0.25 0.15 V+73A 8 56 10.222 2.23 7.6000E-04 2.2000E-04 V+73A 8 57 0.3 0.1 V+73A 8 58 10.222 4.46 3.6000E-03 9.0000E-04 V+73A 8 59 2.5 0.9 V+73A 8 60 10.222 5.01 0.488 0.112 V+73A 8 61 0.04 0.04 V+73A 8 62 10.230 0. 1.1000E-03 6.0000E-04 V+73A 8 63 V+73A 8 64 10.230 2.23 2.2000E-03 1.2000E-03 V+73A 8 65 V+73A 8 66 10.230 3.78 1.2000E-03 6.0000E-04 V+73A 8 67 V+73A 8 68 10.230 4.28 8.4000E-03 2.5000E-03 V+73A 8 69 V+73A 8 70 10.230 4.70 7.6000E-03 4.1000E-03 V+73A 8 71 V+73A 8 72 10.230 5.41 V+73A 8 73 1.3 0.7 V+73A 8 74 10.230 5.55 6.3000E-03 3.4000E-03 V+73A 8 75 V+73A 8 76 10.230 6.22 3.8000E-04 2.1000E-04 V+73A 8 77 V+73A 8 78 10.230 7.00 8.5000E-03 V+73A 8 79 3.5 V+73A 8 80 10.230 7.11 0.032 0.017 V+73A 8 81 V+73A 8 82 10.230 7.54 0.033 0.018 V+73A 8 83 V+73A 8 84 10.256 2.23 V+73A 8 85 1.1 0.6 V+73A 8 86 10.256 4.46 5.6000E-04 3.1000E-04 V+73A 8 87 0.4 0.4 V+73A 8 88 10.256 5.01 0.012 0.0065 V+73A 8 89 0.04 0.02 V+73A 8 90 10.256 5.41 5.0000E-05 3.0000E-05 V+73A 8 91 V+73A 8 92 10.256 6.41 2.4000E-04 1.3000E-04 7.8000E-03 4.0000E-03 V+73A 8 93 2. 1. V+73A 8 94 10.256 6.62 0.70 0.16 V+73A 8 95 0.20 0.14 V+73A 8 96 10.256 6.76 1.0000E-03 6.0000E-04 0.033 0.018 V+73A 8 97 V+73A 8 98 10.256 7.35 6.0000E-04 4.0000E-04 0.018 0.010 V+73A 8 99 V+73A 8 100 10.256 7.70 4.0000E-04 2.0000E-04 0.013 0.007 V+73A 8 101 V+73A 8 102 10.256 7.95 0.233 0.126 V+73A 8 103 V+73A 8 104 10.287 2.23 1.4000E-04 9.0000E-05 V+73A 8 105 V+73A 8 106 10.287 4.46 4.8000E-04 3.2000E-04 V+73A 8 107 V+73A 8 108 10.287 5.01 0.104 0.067 V+73A 8 109 V+73A 8 110 10.289 0. V+73A 8 111 0.4 0.2 V+73A 8 112 10.289 2.23 2.6000E-04 7.0000E-05 V+73A 8 113 0.2 0.1 V+73A 8 114 10.289 4.28 3.0000E-05 2.0000E-05 V+73A 8 115 V+73A 8 116 10.289 5.01 0.0175 0.0045 V+73A 8 117 0.23 0.07 V+73A 8 118 10.289 5.41 6.0000E-05 3.0000E-05 V+73A 8 119 V+73A 8 120 10.289 5.78 2.6000E-03 1.4000E-03 V+73A 8 121 V+73A 8 122 10.289 6.22 0.077 0.019 V+73A 8 123 0.22 0.10 V+73A 8 124 10.289 6.67 2.1000E-04 1.1000E-04 V+73A 8 125 V+73A 8 126 10.289 7.00 1.9000E-04 1.1000E-04 V+73A 8 127 V+73A 8 128 10.289 8.13 1.1000E-03 6.0000E-04 V+73A 8 129 V+73A 8 130 10.331 0. 2.3000E-04 1.9000E-04 V+73A 8 131 V+73A 8 132 10.331 2.23 2.4000E-03 6.0000E-04 V+73A 8 133 V+73A 8 134 10.331 4.70 1.8000E-03 5.0000E-04 V+73A 8 135 V+73A 8 136 10.331 5.55 1.2000E-03 7.0000E-04 V+73A 8 137 V+73A 8 138 10.331 8.13 0.012 0.007 V+73A 8 139 V+73A 8 140 10.369 0. V+73A 8 141 0.015 V+73A 8 142 10.369 2.23 0.017 0.005 V+73A 8 143 V+73A 8 144 10.369 4.28 0.15 0.04 V+73A 8 145 0.02 0.02 V+73A 8 146 10.369 4.70 0.050 0.015 V+73A 8 147 0.02 0.01 V+73A 8 148 10.369 5.01 3.3000E-04 1.8000E-04 V+73A 8 149 V+73A 8 150 10.369 5.41 0.083 0.025 V+73A 8 151 0.005 0.005 V+73A 8 152 10.369 5.55 0.030 0.016 V+73A 8 153 V+73A 8 154 10.369 6.22 1.1000E-03 6.0000E-04 V+73A 8 155 V+73A 8 156 10.369 6.67 0.22 0.05 V+73A 8 157 0.02 0.02 V+73A 8 158 10.369 7.19 0.026 0.014 V+73A 8 159 V+73A 8 160 10.369 7.49 0.07 0.04 V+73A 8 161 V+73A 8 162 10.395 2.23 V+73A 8 163 0.8 0.5 V+73A 8 164 10.395 4.46 8.0000E-05 4.0000E-05 V+73A 8 165 V+73A 8 166 10.395 5.01 0.015 0.008 V+73A 8 167 0.10 0.06 V+73A 8 168 10.395 6.41 1.4000E-04 8.0000E-05 4.7000E-03 3.0000E-03 V+73A 8 169 1.2 0.7 V+73A 8 170 10.395 6.62 0.65 0.15 V+73A 8 171 0.5 0.4 V+73A 8 172 10.395 6.76 6.0000E-04 3.0000E-04 0.020 0.011 V+73A 8 173 V+73A 8 174 10.395 6.85 3.0000E-04 2.0000E-04 0.010 0.005 V+73A 8 175 V+73A 8 176 10.395 7.70 3.0000E-04 2.0000E-04 0.011 0.006 V+73A 8 177 V+73A 8 178 10.395 7.95 0.14 0.08 V+73A 8 179 V+73A 8 180 ENDDATA 164 V+73A 8 181 ENDSUBENT 8 V+73A 899999 ENDENTRY 8 V+73A9999999